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Abstract 
 

In this study, we present a new approach to overcome 
the problems in face recognition associated with 
illumination changes by utilizing the edge images rather 
than intensity values. However, using edges directly has its 
problems. To combine the advantages of algorithms based 
on shading and edges while overcoming their drawbacks, 
we introduced “hills” which are obtained by covering 
edges with a membrane. Each hill image is then described 
as a combination of most descriptive eigenvectors, called 
“eigenhills”, spanning hills space. 

We compare the recognition performances of eigenface, 
eigenedge and eigenhills methods by considering 
illumination and orientation changes on Purdue A&R face 
database and showed experimentally that our approach 
has the best recognition performance. 
 

1. Introduction 
 

Face recognition is one of the leading research topics 

among researchers. Researchers focused on recognition of 

faces in strictly controlled environments. Yuille et. al [1] 

tried to obtain subjective features by template matching, 

while others tried to obtain the variation among images for 

classification purposes. One of the important studies on 

describing the changes in face classes, “eigenfaces for 

recognition”, was proposed by Pentland and Turk [2], 

which depended on characterizing the information of each 

subject face in a low dimensional feature space by using 

Karhunen-Loeve expansion (KLT). 

Though, eigenfaces boost the researches on recognition 

of faces, the idea itself is prone changes in illumination. 

Studies to solve the illumination problem focused on 

modeling of illumination effect on faces or finding 

illumination free features to describe a face. Tàkacs and 

Wechsler proposed an edge based approach to recognize 

faces using Hausdorff distance [4]. Belhumeur et. al. [5] 

developed fischerface approach to overcome the 

illumination changes. 

In this study, we proposed an algorithm based on KLT 

to overcome problems due to illumination variation and 

pose changes. Our approach depends on the fact that edges 

do not change considerably in varying illumination. 

However, edges bring their own problems, they are very 

sensitive to pose and orientation changes of the face. We 

overcome these problems by covering the edges with a 

membrane, which is related to regularization theory. 

The organization of this paper is as follows. In the next 

section, a theoretical analysis of illumination effect on gray 

scales and edge maps is given. In the following section, we 

give brief descriptions of the eigenface, edge-based 

approach and our method, the eigenhill. Then, 

performances of three methods on Purdue face database 

are examined. In last section, a conclusion is given. 

 

2. Illumination Effect on Face and Edges 
 

For two point light sources, one is on at a particular 

time, illumination change can alter the appearances of 

objects. To describe effect of illumination variation, we 

will identify the differences of two lighting patterns of an 

object for two distinct light sources. In the case of a 

lambertian surface, the image is determined by the image 

irradiance equation, I(x,y)=R(p,q,ps,qs), where  
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and p=∂z/∂x, q=∂z/∂y, while z is the depth map of the 

object. For two different light sources (ps1,qs1) and (ps2,qs2), 

where ps2=ps1+δps and qs2=qs1+δqs, corresponding 

reflectance maps will be, 
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where, for δps≠0, δqs≠0, A and B is given by, 

 
22

11

1 ss qpA ++=
 (4) 

 
2222 δδδ2δ21

1111
qspsqsspssss qpqpB ++++++=
. (5) 

The edge of objects can be obtained via zero crossings 

of laplacian operator, ∇ 2R=Rxx+Ryy, where Rxx and Ryy  

represent second derivatives of R with respect to x and  y. 
In the following sub-sections, analysis of changes 

between edges and textures of objects for four cases, 

planar objects, spheres and simulated and real faces, is 

given. 

 

2.1. Planar Object 
 

In planar lambertian surfaces, the depth, z, does not 
change. Thus, p=zx=0, q=zy=0 and the image is seen 

equally bright in all directions. The reflectance map 

corresponding to planar case is, 221/1),( ssss qpqpR ++= . 

The laplacian of the R(ps,qs) is, ∇ 2R=Rxx+Ryy=0+0=0, thus 

the planar case does not have any edges except on the 

boundaries, and two edge maps obtained for two different 

illumination will be the same. 

On the other hand, the difference of gray levels between 

two images of the same planar surface is, 

 ABABRR r
21
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and 0≠− AB . Thus, we have |∇ 2R1-∇ 2R2|<|R1-R2|, thus 

for planar surfaces edges are more robust representations. 

 

2.2. Spherical Object 
 

For spherical lambertian objects, the depth information 

is z2=r2-x2-y2, where r is the radius of the sphere. Let’s 
assume C=r2-x2-y2. Thus R will be, 
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Laplacian of this reflectance map can be obtained as, 
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Zero crossings of ∇ 2R will occur only when x2+y2=2r2, 
which are the boundary locations of the sphere. Hence, the 

difference between edge maps is, |∇ 2R1-∇ 2R2|=0. On the 

other hand, the difference between intensity values is, 
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If we take limit of |R1-R2| as δps, δqs go to infinity we get, 
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This reveals that |∇ 2R1-∇ 2R2|≤|R1-R2| for the spherical 

lambertian objects. 

 

2.3. Simulated Faces 
 

As compared to above situations, human faces have 

highly non-convex shape creating cast shadows. In order 

to observe the importance of non-convex structure on 

edges, we constructed experiments on a wire-frame faces. 

To utilize effects of varying illumination, point light 

sources are located in a semi-circle with 22.5° apart. We 

placed an ambient light source to simulate natural lighting 

conditions. Rendered faces from wire-frame structure by 

turning on one light source at a time along with the 

ambient light are shown in Fig1.1a and corresponding 

edge maps are shown in Fig.1b. 

 
(a) 

 
(b) 

Figure 1. (a) Rendered faces with one point light 
source along with the ambient light source, (b) 

corresponding edge maps. 
To quantitatively evaluate the effect of variation in 

illumination for simulated faces, we used the probabilistic 

measures, Pr(IE|DE), Pr(DE|IE) and mean square distance 

(MSD), where IE is ideal edge and DE is detected edge. 

MSD of detected edges from ideal edges is calculated as 4 

pixels. The probabilities are calculated for 7x7 masks in 

order to compensate the movements of narrow-structured 

edges. This indicates that edges cannot be directly utilized 

for a robust face recognition scheme, their narrow structure 

should be widened. However, this modification should not 

disturb the localization of the edge point. 

 

 

 



2.4. Real Face Images 
 

After simulation experiments, we scrutinized the case 

for real world faces of Purdue A&R face database. We 

used the natural lighting conditions of 113 subject faces as 

the ideal set and three groups of 339 images as the test set, 

containing faces illuminated with left, right and both left 

and right light sources. The three groups and the ideal face 

and edges associated with them are shown in Fig.2. 

 

 
Figure 2. First row ideal face (leftmost) and test 

faces. Second row corresponding edges. 

Afore-mentioned probabilistic calculations for 

quantitative evaluations are plotted in Fig.3 for 1x1 and 

7x7 neighborhood masks. The use of 7x7 mask is due to 

non-ideal alignment of camera in addition to the reasons 

stated in the previous section. 

 

 
Figure 3. Probabilistic measures, Pr(IE|DE) and 

Pr(DE|IE) for 1x1 and 7x7 masks. 
 

3. Methods 
 

Given a set of faces, the classification of faces can be 

achieved in a low dimensional space rather than using a 

high dimensional face space. Low dimensional space can 

be found by KLT, which is capable of reconstructing 

original face from unlabelled faces, since it holds adequate 

information of variations for each face of the learning set. 

In this section, we will give a brief description of 

eigenface scheme along with an edge based KLT scheme, 

and our approach, the eigenhill scheme. 

 

3.1. Eigenfaces 
 

Eigenface method is based on dimensionality reduction 

obtained by KLT [2]. The new dimensions are defined to 

decrease the correlation among T faces constructing the 
learning set. In KLT, orthonormal eigenvectors, ui and 

eigenvalues, λi, of the covariance matrix, C, calculated 

from face vectors are used to obtain low dimensional 

representation, where i=1,…,T-1. Since the variation can 
be formulated by selecting M maximum eigenvalued 

eigenvectors (eigenfaces), where M<T [2], each face can 
be reconstruct by weighted, wi for i=1,..,M, sum of 

eigenvectors. The characteristic Wj vector which is used as 

reduced face space of jth face class, j=1,...,T, is formed by 

wi weights and nearest neighbor classifier in the reduced 

feature space performs the recognition. 

There are two basic drawbacks of this approach. First 

one is, a change in illumination will degrade the 

recognition performance. Second one is the presence of 

noise in the subject image. These performance 

degradations are due to the fact that eigenface method is 

highly sensitive to local texture information within a face. 

Instead of using highly variable local information, more 

robust descriptive property can be used. Edge maps are 

important features which are not distorted by illumination 

changes as shown in the previous section. 

3.2. Edge based Eigenspace Decomposition 
 

To utilize the advantages of edges, 2D Generalized 

Edge Detector (GED) [6], which unifies most of the well-

known edge operators, such as Canny, Deriche, etc., under 

a framework, is used. GED represents edge maps in λτ 
space, which is an extension to the scale space 

representation. It is based on regularization theory, which 

utilizes convex combination of membrane and thin plate 

energy functionals. 

Eigenspace decomposition can be applied to edge maps 

of the learning set. In this case eigenvectors is be named 

"eigenedges". 

A drawback of eigenedge approach is the locality of 

edge representation. Any change in facial expression or a 

shift in edge locations due to small rotation of the edges 

will result in recognition performance degradation. On the 

other hand, if the images are taken in strictly controlled 

manner, eigenedge system gives acceptable performance. 



However, it is not guarantied to attain strict control on the 

orientation and expression of face. 

 

3.3. Eigenhills 
 

To overcome the locality problem of edges, a 

membrane functional, 

 Em(f,λ)=∫∫Ω(f-d)2dxdy+λ(1-τ)∫∫Ω (fx
2
+fy

2
)dxdy  (11) 

can be applied to edge maps. The spread edge profiles 

obtained by a membrane, composes a ghostly face, “hill”. 

Hills have high values on boundary locations and decrease 

as we move apart from edges. Hills are shown in Fig.4b. 

It is known that, minimizing the membrane functional is 

equivalent to convoluting the data with a first order 

regularization filter, R1(x,y;λ), [6], 

 R1(x,y;λ)=(1/2λ)e-[(|x|+|y|)/λ] (12) 

which is shown in Fig.4a. 

   
 (a) (b) 

Figure 4. (a) R1 filter (λ=2), (b) Sample hills. 

 
Figure 5. Eigenhills. 

Low dimensional representations of hills can be 

determined by KLT. Eigenvectors of covariance matrix 

defined for hills is be named as “eigenhills”, and they are 

shown in Fig.5. 

4. Results and Conclusion 
 

To show that eigenhills approach is more robust to 

illumination changes compared to eigenface and 

eigenedge, we used simulated and real face images by 

utilizing two criteria: recognition measure, ε=||Wl-Wt||2, 

where l is learning and t is test set, and reconstruction 
error, ε=||Γr-Γi||2, where Γr is reconstructed face. 

 

4.1. Simulated faces 
 

In the experiments, we used the learning set of Fig.6 

along with the test set of Fig.1a. Since the simulated faces 

are designed on strictly controlled environment, there is no 

non-ideal alignment of edges, so performance comparison 

would be made only on varying illumination. 

 
Figure 6. Learning set constructed using Maya® . 
The comparison for the faces is acquired by measuring 

the distance of the reconstructed face/hill to the recognized 

face in the face/hill space. Resulting diagrams for face 

space distance and weight distance are given in Fig.7a and 

b respectively.  In diagrams distances indicates that 

eigenhills has better performance than the eigenfaces. 

  
 (a) (b) 

Figure 7. Distance of reconstructed face to (a) face 
space, (b) weight space. 

 

4.2. Real faces 
 

To observe the performance of real face images, we 

tested three approaches on 126 individuals of Purdue face 

database [7]. In experiments, we used natural lighting 

conditions as learning set, Fig8a, test set of 756 faces of 

six categories: left side light is on, right side source is on, 

both sidelights are on, and three facial expressions, angry, 

laughing and screaming, shown in Fig.8b. 

      
 (a) (b) 

Figure 8. (a) Learning set, (b) test set faces. 
Average reconstruction distances given in Table 1 con-

firms that eigenhill has better performance compared to 

eigenedges, and eigenfaces. Eigenedges gave the poorest 

performance due to non-ideal alignment and low correlati-

on among edge maps. 

Table 1. Average distance to face space. 

 



Recognition performances for the three systems are 

given in Table 2. From the table it is be observed that the 

recognition performance for all three lighting conditions 

for eigenhills is 86.4%, while for eigenface it is only 

69.8%. Eigenedge method has the poorest recognition 

performance. Recognition performance of eigenhills for 

facial expression change is 88.8%, which is above 

eigenface’s performance, 88.4%. 

Table 2. Recognition performances. 
 

 Both 

sidelight 

Left 

sidelight 

Right 

sidelight Scream Laugh Anger

Eigenface 44.7% 85.8% 79.1% 83.8% 92.9% 89.1%

Eigenedge 18.7% 34.2% 27.5% 16.7% 42.5% 30.0%

Eigenhill 80.2% 91.6% 87.5% 79.8% 95.0% 91.6%

 

Note that, overall recognition performance of eigenhill 

is 89.4%, which is above eigenface’s overall recognition 

performance, 82.3%. Also, overall performance of the 

eigenedge method 38.8%, is below the acceptable range. 

From the results of the experiments given above, we 

conclude that eigenhills approach is more robust to 

illumination variation than eigenface and eigenedge. 
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