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Abstract 
Earthquake fault systems are now thought to be an example of a complex 
nonlinear system (Bak, 1987; Rundle, 1995).  The spatial and temporal system 
complexity of this system translates into a similar complexity in the surface 
expression of the underlying physics, including deformation and seismicity. Our 
research suggests that a new pattern dynamic methodology can be used to 
define a unique, finite set of seismicity or deformation patterns for a given fault 
system (Tiampo et al., 2002).  Similar in nature to the empirical orthogonal 
functions historically employed in the analysis of atmospheric and 
oceanographic phenomena (Preisendorfer, 1988), the method derives the 
eigenvalues and eigenstates from the diagonalization of the correlation matrix 
using a Karhunen-Loeve expansion (Fukunaga, 1990, Rundle, et al., 2000, 
TIampo et al., 2002).  This Karhunen-Loeve expansion (KLE) technique may be 
used to help determine the important modes in both time and space for southern 
California seismicity as well as deformation (GPS) data.  These modes 
potentially include such time dependent signals as plate velocities, 
viscoelasticity, and seasonal effects.  This can be used to better model 
geophysical signals of interest such as coseismic deformation, viscoelastic 
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effects, and creep.  These, in turn, can be used for both model verification in 
large-scale numerical simulations of southern California and error analysis of 
remote sensing techniques such as InSar. 

Introduction 

Data assimilation is the process by which observational data is incorporated into models to 
set their parameters, and to tune them in real time as new data becomes available. The 
result of the data assimilation process is a model that is maximally consistent with the 
observed data, producing a model that is useful in ensemble forecasting. With the idea that 
the state of the model follows an evolutionary path through state space as time progresses, 
and that observations can be used to periodically adjust model parameters, so that the 
model path is as close as possible to the path represented by the observed system, a cost 
function, or fitness function, defines the misfit between the model path through time and 
the path represented by the observed data. Model tuning occurs by computation of a 
gradient vector in state space, which specifies the direction in which corrections to the 
model must be applied in order to return the model evolution towards the path defined by 
the observations.  

A major drawback to all these methods is that although geophysical dynamics can 
sometimes be considered quasi-linear, in general, they are not. However, earthquake 
dynamics are characterized by time intervals over which evolution of state occurs 
smoothly, but then sudden large jumps to a new state occur that produce large 
rearrangements in system state. Problems of this type have motivated recent searches for 
methods to assimilate data into models that have highly nonlinear, stochastic dynamics. At 
the present time, data assimilation into models such as Virtual_California is carried out via 
a static assimilation algorithm rather than a dynamic algorithm. One alternative, a genetic 
algorithm (GA), is a nonlinear adaptation procedure based on the mechanics of natural 
selection and genetics. A GA offers the advantage of being independent of the choice of 
starting model, and not requiring the linearization of the source function. For a geophysical 
problem, the GA evolves a vector of model parameters that optimizes the cost (fitness) 
function, producing fitter solutions in each new generation. The cost function is defined 
quantifying the fit of the simulation data to the historic data through time. The potential 
data types include earthquake occurrence time, location, and moment release, as well as 
surface deformation data obtained from InSAR, GPS, and other methods.  

 

Karhunen-Loeve Expansion (KLE) Analysis 

Pattern evolution and prediction in nonlinear systems is complicated by nonlinear 
interactions and noise, but understanding such patterns, which are simply the surface 
expression of the underlying dynamics, is critical to understanding and perhaps 
characterizing the physics which control the system.  Rundle, et al., 2000, proposed a 
method of decomposing the complex spatial and temporal patterns that are the surface 
expression of the obscure dynamics of the physical system, into the orthonormal pattern 
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eigenstates.  This decomposition implicitly assumes that one is dealing with a process that 
is both Markov and stationary in time.  The procedure involves constructing a correlation 
operator, C(xi,xj), for the sites that contains the spatial relationship of slip events over time. 
C(xi,xj) is decomposed into the orthonormal spatial eigenmodes for the nonlinear threshold 
system, ej, and their associated time series, aj(t). These spatial-temporal pattern states can 
be used to reconstruct the primary modes of the system, with or without noise, and 
quantify their relative magnitude and importance.  In addition, these primary modes can be 
used to characterize the underlying dynamics and the physical parameters such as stress 
levels and interactions that control the observable patterns of events.  We propose to apply 
this technique to SCIGN data in order to determine the principal modes of deformation for 
the southern California fault system. 

Similar to the empirical orthogonal function (EOF) technique developed by 
Preisendorfer, 1988, for the atmospheric sciences, the Karhunen-Loeve expansion is 
obtained from the p time series that record the deformation history at particular locations 
in space.  Each time series, y(xs,ti) = yi

s, s = 1, ... p, consists of n time steps, i = 1, … n.  
The goal is to construct a time series for each of a large number of locations for a given 
short period of time.  If, for example, the time interval was decimated into units of days, 
the result could be a time series of 365 time steps for every year of data, with values of 
deformation for that location at each time step. These time series are incorporated into a 
matrix, T, consisting of time series of the same measurement for p different locations, i.e.  
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For analysis of SCIGN data, the values in the matrix T will consist of either strain or 

deformation measurements, horizontal or vertical.  The covariance matrix, S(xi,xj), for 
these events is formed by multiplying T by TT, where S is a p x p real, symmetric matrix. 
The covariance matrix, S(xi,xj), is converted to a correlation operator, C(xi,xj), by dividing 
each element of S(xi,xj), by the variance of each time series, y(xi,t) and y(xj,t),  
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This equal-time correlation operator, C(xi,xj), is decomposed into its eigenvalues and 

eigenvectors in two parts. The first employs the trireduction technique to reduce the matrix 
C to a symmetric tridiagonal matrix, using a Householder reduction. The second part 
employs a ql algorithm to find the eigenvalues, λj

2, and eigenvectors, ej, of the tridiagonal 
matrix (Press, et al., 1992). These eigenvectors, or eigenstates, are orthonormal basis 
vectors arranged in order of decreasing 
variance that reflect the spatial relationship of 
events in time.  If one divides the 
corresponding eigenvalues, λj

2, by the sum of 
the eigenvalues, the result is that percent of the 
variance accounted for by that particular mode. 
We then reconstruct the time series associated 
with each location for each eigenstate by 
projecting the initial data back onto these basis 
vectors in what is called a principal component 
analysis (PCA) (Preisendorfer, 1988). These 
time dependent expansion coefficients, aj(t), 
which represent temporal eigenvectors, are 
reconstructed by multiplying the original data 
matrix by the eigenvectors, i.e.  
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where j ,s = 1, ... p  and i = 1, … n.  This 

eigenstate decomposition technique produces 
the orthonormal spatial eigenmodes for this 
nonlinear threshold system, ej, and the 
associated principal component time series, 
aj(t). These principal component time series 
represent the signal associated with each 
particular eigenmode over time. For purposes 
of clarity, the spatial eigenvectors are 
designated KLE modes and the associated time 
series Principal Component (PC) vectors.  

Figure 1:  Sixteen standard eigenfaces 
from PC analysis of 128 face 
samples.  Recognition rate as a 
function of the number of eigenfaces 
used for reconstruction (http://www-
white.media.mit.edu/vismod).
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The KL expansion, a linear decomposition technique in which a dynamical system is 
decomposed into a complete set of orthonormal subspaces, has been applied to a number 
of other complex nonlinear systems over the last fifty years, including the ocean-
atmosphere interface, turbulence, meteorology, biometrics, statistics, and geophysics 
(Preisendorfer, 1988; Savage, 1988; Penland, 1989; Vautard and Ghil, 1989; Fukunaga, 
1990; Penland and Sardeshmukh, 1995; Tiampo et al., 2002).  Applied over sufficiently 
long time periods, a KL decomposition reveals the underlying correlations in the spatial 
pattern of the seismicity (Tiampo et al., 2002).  Shown in Figure 1 are the results of a 
biometrics KL analysis, in which the decomposition is applied to a facial recognition 
system (Moghaddam et al., 1998).  

Results and Discussion 

Rundle, 2000, details successful application of these techniques to computer 
simulations of the complex fault systems.  In particular, the method is extended to include 
an unequal-time correlation operator that can be used to forecast events in time; in much 
the same manner as EOF analysis is used to predict El Nino events in meteorology (Garcia 
and Penland, 1989; Penland, 1989; Preisendorfer, 1988).  A more pertinent example to 
illustrate its application to SCIGN data can be found in the analysis of actual seismicity 
data for southern California.  The data used is from the entire Caltech catalogue, obtained 
from the SCEC database, from 1932 through June of 1998. Relevant information consists 

of location in latitude and longitude, and the time that the event occurred.  Each time step 
is given an initial value of 1.0, if one or more events occur in that time period. This is done 
for each location time series, after which the mean for each time series is removed from 
the data.  A Karhunen-Loeve expansion (KLE) analysis was then performed on the entire 
data set (Tiampo, et al, 2002). Shown in Figure 2 are the results of a KL analysis for 
historic seismicity data from southern California for the period 1932 through 1991 
(Tiampo et al., 2002).   

The results in Figure 2 demonstrate the viability of applying this new pattern dynamics 
methodology to historical seismicity data.  Actual data can be decomposed into its 

Figure 2:  a) First KL mode, 1932-1991; b) Second KL eigenpattern and c) eighth KL
eigenpattern.  Note the appearance of correlations associated with the 1992 Landers event,
not included in this data set.
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orthonormal 
basis functions, 
and the 
eigenstates 
derived from 
these analyses 
can be used to 
reconstruct the 
primary modes, 
either with or 
without the 
associated 
noise.  
Information 
about the 
primary modes 
of this pattern analysis can be used to model the underlying dynamics of the system; in 
particular the stress fields associated with the fault interactions.  Figure 3 shows the first 
two KL decomposition modes for Virtual California, illustrating the success of the 
technique on the numerical simulations, and the possibilities for data assimilation. 

Application of this equal-time correlation operator technique to coherent GPS data, 
specifically the SCIGN data array of southern California, can be used to characterize the 
underlying dynamics and the physical parameters such as stress levels and interactions 
which control the observable patterns of events.  Modeling of the potential geophysical 
sources of the deformation can be accomplished in a variety of ways, most notably by 
employing an updated, more detailed version of the southern California fault patch model 
developed in the mid-1980s. 

For each of the existing SCIGN stations, approximately 200 at this time, the 
appropriate strain or deformation time series was be identified, and a KLE analysis 
performed.  For example, a potentially rewarding avenue could include the separation of 
vertical motions from horizontal motions, leading to the identification of modes whose 
surface expression has a large vertical component, such as viscoelastic response or 
seasonal hydrologic patterns.  Another expected result are modes consisting of localized 
strain interactions between particular stations, signaling small-scale features previously 
unidentified in the data, such as creep events or blind thrust faults.  In addition, there are 
several modes that one would expect to see and which could be better modeled without the 
interaction of additional modes and noise, as this method will allow for their separation.  A 
partial list would include plate motions, coseismic deformation, groundwater or oil well 
extraction, creep events or `slow' earthquakes, blind thrust faults, viscoelastic response, 
local variations in strain rate, and seasonal hydrologic cycles. 
 

Figure 3:  First four KL modes, Virtual California. 
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A very simple analysis has been 
done as an example on vertical 
motions for stations, with data 
obtained directly from the SCIGN 
web site.  Results for the first KLE 
mode is shown in Figure 4.   
Shown the time series for the first 
KL mode for the vertical data after 
1998.  Note the correlation through 
the Mojave desert which 
incorporates both the area of the 
Landers sequence of 1992 and the 
Hector Mine event of 1999.  This 
corresponds to a jump in the 
associated time series, also shown 
in the attached figure, at the time of 
the Hector Mine event in the fall of 
1999.  Unexpected results include 
the correlations just inshore of the 
1933 Long Beach earthquake, and 
the correlated increase in vertical 
motion near the location of the 

1899 Cajon Pass event. 
Finallly, Figure 5 shows both the GPS and the InSar 

deformation for one simulated earthquake from the 
Virtual California computer model.  Note that the 
resolution is sufficient to incorporate into an inversion 
model for the purpose of data assimilation. 
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